成公教育旗下网站-【命题人题库】(www.mtrtk.com)更简洁易记!
首页 > 事业单位题库 > 综合题库

综合题库

2019年上半年全国事业单位联考C类《综合应用能力》真题试卷及答案

下载次数:226 8 积分:2 立即下载

资料简介

2019年上半年全国事业单位联考C类《综合应用能力》真题试卷及答案
材料一
1997年,国际象棋大师加里·卡斯帕罗夫败给了电脑“深蓝”;2016年,谷歌人工智能AlphaGo又战胜了韩国棋手李世石,这标志着人工智能终于征服了它在棋类比赛中最后的弱项——围棋,谷歌公司的DeepMind团队比预期提前了整整10年达到了既定目标。
对计算机来说,围棋并不是因为其规则比国际象棋复杂而难以征服——与此完全相反,围棋规则更简单,它其实只有一种棋子,对弈的双方轮流把黑色和白色的棋子放到一个19×19的正方形棋盘中,落下的棋子就不能再移动了,只会在被对方棋子包围时被提走。到了棋局结束时,占据棋盘面积较多的一方为胜者。
围棋的规则如此简单,但对于计算机来说却又异常复杂,原因在于围棋的步数非常多,而且每一步的可能下法也非常多。以国际象棋作对比,国际象棋每一步平均约有35种不同的可能走法,一般情况下,多数棋局会在80步之内结束。围棋棋盘共有361个落子点,双方交替落子,整个棋局的总排列组合数共有约10171种可能性,这远远超过了宇宙中的原子总数——1080!
对于结构简单的棋类游戏,计算机程序开发人员可以使用所谓的“暴力”方法,再辅以一些技巧,来寻找对弈策略,也就是对余下可能出现的所有盘面都进行尝试并给予评价,从而找出最优的走法。这种对整棵博弈树进行穷举搜索的策略对计算能力要求很高,对围棋或者象棋程序来说是非常困难的,尤其是围棋,从技术上来讲目前不可能做到。
“蒙特卡罗树搜索”是一种基于蒙特卡罗算法的启发式搜索策略,能够根据对搜索空间的随机抽样来扩大搜索树,从而分析围棋这类游戏中每一步棋应该怎么走才能够创造最好机会。举例来说,假如筐里有100个苹果,每次闭着眼拿出1个,最终要挑出最大的1个,于是先随机拿1个,再随机拿1个跟它比,留下大的,再随机拿1个……每拿一次,留下的苹果都至少不比上次的小,拿的次数越多,挑出的苹果就越大。但除非拿100次,否则无法肯定挑出了最大的。这个挑苹果的方法,就属于蒙特卡罗算法。虽然“蒙特卡罗树搜索”在此前一些弈棋程序中也有采用,在相对较小的棋盘中也能很好地发挥作用,但在正规的全尺寸棋盘上,这种方法仍然存在相当大的缺陷,因为涉及的搜索树还是太大了。
AlphaGo人工智能程序中最新颖的技术当属它获取知识的方式——深度学习。AlphaGo借助两个深度卷积神经网络(价值网络和策略网络)自主地进行新知识的学习。深度卷积神经网络使用很多层的神经元,将其堆叠在一起,用于生成图片逐渐抽象的、局部的表征。对图像分析得越细,利用的神经网络层就越多。AlphaGo也采取了类似的架构,将围棋模盘上的盘面视为19×19的图片输入,然后通过卷积层来表征盘面。这样,两个深度卷积神经网络中的价值网络用于评估盘面,策略网络则用于采样动作。